Pages

Pages

martes, 1 de octubre de 2013

ANÁLISIS DE LAS CAPACIDADES DEL DISEÑO CURRICULAR NACIONAL EN EL ÁREA DE MATEMÁTICA (IV CICLO) - Mercy Reyes Rodriguez

ANÁLISIS DEL DISEÑO CURRICULAR NACIONAL EN EL ÁREA DE MATEMÁTICA (IV CICLO)
     I.        Fundamentación:
Las matemáticas tienen como finalidad preparar a las personas para el cambio, esto exige que todas las personas desde pequeñas desarrollen capacidades, conocimientos y actitudes para actuar de manera asertiva en el mundo y en cada realidad particular y generar el desarrollo del pensamiento matemático y el razonamiento lógico, permitiendo al estudiante estar en la capacidad de responder a los desafíos que se le presentan, planteando y resolviendo con actitud analítica los problemas de su realidad.
Los niños observan y exploran su entorno inmediato y los objetos que lo configuran, estableciendo relaciones entre ellos cuando realizan actividades concretas de diferentes maneras: utilizando materiales, participando en juegos didácticos y en actividades productivas familiares, elaborando esquemas, gráficos, dibujos, entre otros.
Estas interacciones le permiten plantear hipótesis, encontrar irregularidades, hacer transferencias, establecer generalizaciones, representar y evocar aspectos diferentes de la realidad vivida, interiorizarlas en operaciones mentales y manifestarla utilizando símbolos. De esta manera el estudiante va a desarrollar el pensamiento matemático y el razonamiento lógico, pasando progresivamente de las operaciones concretas a mayores niveles de abstracción.
Los procesos transversales de las matemáticas
 



En el caso de las matemáticas, las capacidades se presentan ordenadas de manera articulada y secuencial para cada grado lo que involucran los procesos transversales siguientes:
Proceso de razonamiento y demostración
Implica desarrollar ideas, explorar fenómenos, justificar resultados, formular y analizar conjeturas matemáticas, expresar conclusiones e interrelaciones entre variables de los componentes del área y en diferentes contextos.
Comunicación matemática
Implica organizar y consolidar el pensamiento matemático para interpretar, representar, y expresar con coherencia y claridad las relaciones entre conceptos y variables matemáticas; comunicar argumentos y conocimientos adquiridos, reconocer conexiones entre conceptos matemáticos y aplicar la matemática a situaciones problemáticas reales.
Resolución de problemas
Implica que el estudiante manipule los objetos matemáticos, active su propia capacidad mental, ejercite su creatividad, reflexione y mejore su proceso de pensamiento al aplicar y adaptar diversas estrategias matemáticas en diferentes contextos, que posibilita la interacción con las demás áreas curriculares.
Enfoques teóricos y otras aportaciones a la matemática
 


Cuadro de texto: JEAN PIAGET  “Enfoque cognitivo”


Según             Jean Piaget, la matemática permite al estudiante construir un razonamiento ordenado y sistemático donde el conjunto de las operaciones del pensamiento, en especial las operaciones lógico matemáticas, son un vasto sistema auto-regulador, que garantiza al pensamiento su autonomía y coherencia.

*      Número
Es un concepto lógico de naturaleza distinta al conocimiento físico o social, ya que no se extraer directamente de las propiedades física de los objetos ni de las convenciones sáciela, sino que se construye a través de un proceso de abstracción reflexiva de las relaciones entre los conjuntos que expresan número. Según Piaget, la formación del concepto de número es el resultado de las operaciones lógicas como la clasificación y la seriación; por ejemplo, cuando agrupamos determinado número de objetos o lo ordenamos en serie. Las operaciones mentales sólo pueden tener lugar cuando se logra la noción de la conservación, de la cantidad y la equivalencia, término a término. Consta de las siguientes etapas:
Regulaciones orgánicas: Que tienen que ver con las hormonas, ciclos, metabolismo, información genética y sistema nervioso.
Regulaciones cognitivas: Tienen su origen en los conocimientos adquiridos previamente por los individuos.
En el caso del aula de clases Piaget considera que los factores motivacionales de la situación del desarrollo cognitivo son inherentes al estudiante y no son, por lo tanto, manipulables directamente por el profesor. La motivación del estudiante se deriva de la existencia de un desequilibrio conceptual y de la necesidad del estudiante de restablecer su equilibrio. La enseñanza debe ser planeada para permitir que el estudiante manipule los objetos de su ambiente, transformándolos, encontrándoles sentido, disociándolos, introduciéndoles variaciones en sus diversos aspectos, hasta estar en condiciones de hacer inferencias lógicas y desarrollar nuevos esquemas y nuevas estructuras mentales.
El desarrollo cognitivo, en resumen, ocurre a partir de la reestructuración de las estructuras cognitivas internas del aprendiz, de sus esquemas y estructuras mentales, de tal forma que al final de un proceso de aprendizaje deben aparecer nuevos esquemas y estructuras como una nueva forma de equilibrio.

Cuadro de texto: LEV VYGOTSKY  “Enfoque sociocultural”
Lo fundamental del enfoque de Vygotsky ha sido la de concebir al sujeto como un ser eminentemente social, en la línea del pensamiento marxista, y al conocimiento mismo como un producto social. 
La teoría de Vygotsky se demuestra en las aulas dónde se favorece la interacción social, donde los profesores hablan con los niños y utilizan el lenguaje para expresar aquello que aprenden, donde se anima a los niños para que se expresen oralmente y por escrito y donde se valora el diálogo entre los miembros del grupo y también le dota de capacidades y recursos para abordar problemas, explicar los procesos seguidos y comunicar los resultados obtenidos.
Vygotsky destaca también la importancia del lenguaje en el desarrollo cognitivo: si los niños disponen de palabras y símbolos, son capaces de construir conceptos mucho más rápidamente. Creía que el pensamiento y el lenguaje convergían en conceptos útiles que ayudan al razonamiento. Observó que el lenguaje era la principal vía de transmisión de la cultura y el vehículo principal del pensamiento y la autorregulación voluntaria.
Conceptos son fundamentales:

*      Funciones mentales superiores
Aquellas con las que nacemos, son naturales y están determinadas genéticamente. El comportamiento derivado de estas es limitado: está condicionado por lo que podemos hacer. Nos limitan en nuestro comportamiento a una reacción o respuesta al ambiente y la conducta es impulsiva.
*      Funciones mentales inferiores
Se adquieren y se desarrollan a través de la interacción social, estas funciones están determinadas por la forma de ser de la sociedad, son mediadas culturalmente y están abiertas a mayores posibilidades.
El conocimiento es resultado de la interacción con los demás adquirimos consciencia de nosotros, aprendemos el uso de los símbolos que, a su vez, nos permiten pensar en formas cada vez más complejas.
*      Habilidades psicológicas
Primeramente se manifiestan en el ámbito social y luego en el ámbito individual, como es el caso de la atención, la memoria y la formulación de conceptos.
En el desarrollo cultural del niño, toda función aparece dos veces: primero, a escala social, y más tarde, a escala individual. Esto puede aplicarse igualmente a la atención voluntaria, a la memoria lógica y a la formación de conceptos.
*      Zona de desarrollo próximo
Es la distancia entre el nivel real de desarrollo, determinado por la capacidad de resolver independientemente un problema, bajo la guía de un adulto o en colaboración con un compañero más capaz.
La construcción resultado de una experiencia de aprendizaje no se transmite de una persona a otra, de manera mecánica como si fuera un objeto sino mediante operaciones mentales que se suceden durante la interacción del sujeto con el mundo material y social.




AUSUBEL  "aprendizaje significativo" 


 



La teoría de Ausubel acuña el concepto de "aprendizaje significativo" para distinguirlo del repetitivo o memorístico y señala el papel que juegan los conocimientos previos del alumno en la adquisición de nuevas informaciones. La significatividad sólo es posible si se relacionan los nuevos conocimientos con los que ya posee el sujeto.

Sus ideas constituyen una clara discrepancia con la visión de que el aprendizaje y la enseñanza escolar deben basarse sobre todo en la práctica secuenciada y en la repetición de elementos divididos en pequeñas partes, como pensaban los conductistas. Para Ausubel, aprender es sinónimo de comprender. Por ello, lo que se comprenda será lo que se aprenderá y recordará mejor porque quedará integrado en nuestra estructura de conocimientos.

*      El primer sentido del término se denomina sentido lógico y es característico de los contenidos cuando son no arbitrarios, claros y verosímiles, es decir, cuando el contenido es intrínsecamente organizado, evidente y lógico.

*      El segundo es el sentido psicológico y se relaciona con la comprensión que se alcance de los contenidos a partir del desarrollo psicológico del aprendiz y de sus experiencias previas. Aprender, desde el punto de vista de esta teoría, es realizar el transito del sentido lógico al sentido psicológico, hacer que un contenido intrínsecamente lógico se haga significativo para quien aprende.
VENTAJAS DEL APRENDIZAJE SIGNIFICATIVO

·         Produce una retención más duradera de la información.
·         Facilita el adquirir nuevos conocimientos relacionados con los anteriormente adquiridos.
·         La nueva información al ser relacionada con la anterior, es guardada en la memoria a largo plazo.
·         Es activo, pues depende de la asimilación de las actividades de aprendizaje por parte del alumno.
·         Es personal, ya que la significación de aprendizaje depende los recursos cognitivos del estudiante.


   II.        Análisis y propuesta de competencias

ORGANIZADORES
COMPETENCIAS


PROPUESTAS DEL DCN
PROPUESTA GRUPAL



NÚMERO, RELACIONES Y OPERACIONES
·         Resuelve problemas de contexto real y contexto matemático, que requieren del establecimiento de relaciones y operaciones con números naturales y fracciones, e interpreta los resultados obtenidos, mostrando perseverancia en la búsqueda de soluciones.
·         Resuelve operaciones y relaciones con números naturales y fracciones, utilizando lenguaje matemático y aplicando propiedades en situaciones contextuales específicas, demostrando perseverancia en la búsqueda de soluciones con responsabilidad.







GEOMETRÍA Y MEDICIÓN
·         Resuelve y formula problemas con perseverancia y actitud exploratoria, cuya solución requiera de las relaciones entre los elementos de polígonos regulares y sus medidas: áreas y perímetros, e interpreta sus resultados y los comunica utilizando lenguaje matemático.
·         Interpreta y valora la transformación de figuras geométricas en distintos aspectos del arte y el diseño.
·         Resuelve y formula problemas sobre relaciones entre los elementos del polígono regular, utilizando técnicas matemáticas en situaciones contextualizadas específicas, con responsabilidad.





·         Interpreta la transformación de figuras geométricas aplicando procedimientos metodológicos en situaciones contextualizadas específicas, con responsabilidad.



ESTADÍSTICA
·         Resuelve problemas con datos estadísticos, de su entorno y comunica con precisión la información obtenida mediante tablas y gráficos.
·         Resuelve problemas estadísticos, como tablas, cuadro de doble entrada, grafico de barras y pictogramas, aplicando procedimientos metodológicos en situaciones contextualizadas específicas, demostrando responsabilidad.





 III.        Análisis y propuesta de capacidades

TERCER GRADO

Ø  NÚMERO Y RELACIONES Y OPERACIONES
procesos











CAPACIDADES

PROPUESTA DEL DCN

PROPUESTA GRUPAL
·         Interpreta y representa números naturales de hasta cuatro cifras.

·          Interpreta relaciones “mayor que”, “menor que”, “igual que” y ordena números de hasta cuatro cifras.
·          Resuelve problemas de adición y sustracción con números naturales de hasta cuatro cifras.
·          Interpreta y grafica fracciones.

·          Interpreta el significado de fracciones homogéneas y las compara estableciendo relaciones “mayor que”, “menor que”, “igual que”. 
·          Interpreta la adición y sustracción de fracciones homogéneas.

·          Explora e interpreta patrones matemáticos de adición, sustracción y multiplicación de números, con uso de la calculadora u otro recurso de las TIC.
·          Resuelve y formula problemas de adición y sustracción de fracciones homogéneas.
·         Calcula mentalmente el producto de un número de dos dígitos por otro de un dígito.
·         Resuelve problemas con la multiplicación de números de hasta dos dígitos por otro de un dígito.
·         Interpreta y representa la división exacta de números naturales.
·         Resuelve problemas con operaciones combinadas de adición, sustracción, multiplicación y división exacta de números naturales.
·         Interpreta y formula sucesiones de razón  aritmética con números naturales.
·         Interpreta y representa número naturales de hasta cuatro cifras, utilizando el lenguaje matemático, en situaciones contextuales específicas, demostrando responsabilidad.
·         Interpreta relaciones “mayor que”, “menor que”, “igual que” y ordena números de hasta cuatro cifras aplicando el pensamiento lógico, en situaciones contextuales específicas, demostrando responsabilidad.
·         Resuelve problemas de adición y sustracción con números naturales de hasta cuatro cifras, lo aplica en situaciones contextuales específicas, demostrando responsabilidad.
·         Interpreta y grafíca fracciones, aplicando técnicas matemáticas, en situaciones contextuales específicas, demostrando responsabilidad.
·          Interpreta el significado de fracciones homogéneas y las compara estableciendo relaciones “mayor que”, “menor que”, “igual que”, aplicando el pensamiento lógico en situaciones contextualizadas específicas.
·          Interpreta la adición y sustracción de fracciones homogéneas, aplicando técnicas matemáticas, en situaciones contextualizadas específicas, demostrando responsabilidad.
·          Explora e interpreta patrones matemáticos de adición, sustracción y multiplicación de números, con uso de la calculadora u otro recurso de las TIC, en situaciones contextuales específicas, demostrando responsabilidad.
·          Formula y resuelve  problemas de adición y sustracción de fracciones homogéneas, aplicando técnicas matemáticas, en situaciones específicas, demostrando responsabilidad.
·         Calcula mentalmente el producto de un número de dos dígitos, aplicando pensamiento lógico en situaciones contextualizadas mostrando responsabilidad.
·         Resuelve problemas con la multiplicación de números de hasta dos dígitos aplicando propiedades  y utilizando un lenguaje matemático en en situaciones  contextuales especificas   con responsabilidad.
·         Interpreta y representa la división exacta de números naturales aplicando propiedades en situaciones contextuales específicas trabajando con responsabilidad.
·         Resuelve problemas con operaciones combinadas utilizando un leguaje matemático y aplicando propiedades en situaciones contextuales especificas con perseverancia y responsabilidad.
·         Interpreta y formula sucesiones de razón  aritmética con números naturales aplicando propiedades en situaciones contextuales específicas con perseverancia y responsabilidad.







Ø  GEOMETRÍA Y MEDICIÓN

Procesos





1.- mide: el niño pasa por  la percepción , observación
2.-identificar: el niño pasa por  la percepción, observación, discriminación,
3.- graficar: el niño pasa por  la percepción, observación, discriminación, identificar, emparejar secuenciar u ordenar .
4.- comparar: el niño pasa por  la percepción, observación, discriminación, identificar, emparejar secuenciar u ordenar, graficar , compara
5.-interpretar: el niño pasa por  la percepción, observación, discriminación, identificar, emparejar secuenciar u ordenar, graficar, compara, clasificar, analizar
6.-respresentar: el niño pasa por  la percepción, observación, discriminación, identificar, emparejar secuenciar u ordenar, graficar, compara, clasificar, analizar, interpretar,
7.- resolución de problemas: el niño pasa por  la percepción, observación, discriminación, identificar, emparejar secuenciar u ordenar, graficar, compara, clasificar, analizar, interpretar, generalizar

CAPACIDADES

PROPUESTA DEL DCN
PROPUESTA GRUPAL

·         Identifica rectas paralelas y perpendiculares en cuerpos geométricos: prisma, cubo. y cilindro.


·         Identifica y grafica el eje de simetría de figuras simétricas planas.


·         Identifica, interpreta y grafica desplazamientos de objetos en el plano.


·         Mide superficies y perímetros, comparando los resultados haciendo uso de diferentes unidades de medida.

·          Resuelve problemas que implican cálculo de perímetros y áreas de fi guras geométricas básicas.


·          Interpreta y representa la equivalencia de minutos, horas, días, semanas.



·          Resuelve problemas sobre la duración de acontecimientos.
·         Identifica rectas paralelas y perpendiculares en cuerpos geométricos: prisma, cubo. y cilindro aplicando criterios pertinentes y utilizando técnicas matemáticas, en situaciones contextuales especificas con responsabilidad.
·         Identifica, interpreta y grafica el eje de simetría de figuras simétricas planas aplicando técnicas matemáticas, en situaciones contextuales especificas con responsabilidad.
·         Identifica, interpreta y grafica desplazamientos de objetos en el plano aplicando procedimientos metodológicos en situaciones contextuales especificas trabajando con responsabilidad.
·         Mide superficies y perímetros, utilizando las diferentes unidades de medida, comparando los resultados, en situaciones contextuales especificas, trabajando con responsabilidad.
·         Resuelve problemas de cálculo de perímetros y áreas de figuras geométricas básicas, aplicando procedimientos metodológicos, en situaciones contextuales especificas, trabajando con responsabilidad.
·         Interpreta y representa la equivalencia de minutos, horas, días, semanas; para medir periodos de tiempo, demostrando dominio de los referentes temporales, en situaciones contextuales especificas, trabajando con responsabilidad.
·         Resuelve problemas sobre la duración de acontecimientos, utilizando técnicas adecuadas para la resolución de problemas, en situaciones especificas, trabajando con responsabilidad.




Ø ESTADÍSTICA







CAPACIDADES

PROPUESTA DEL DCN

PROPUESTA GRUPAL
·         Interpreta y representa información numérica en tablas de doble entrada, gráfico de barras y pictogramas.
·         Identifica y relaciona la ocurrencia de sucesos numéricos y no numéricos: seguros, probables e improbables.
•Identifica, representa e interpreta información numérica en tablas de doble entrada, gráficos de barras y pictogramas, aplicando procedimientos metodológicos, en situaciones contextuales, trabajando con responsabilidad.

•Identifica y relaciona la ocurrencia de sucesos numéricos y no numéricos: seguros, probables e improbables, utilizando procesos, en situaciones contextuales específicas, trabajando con responsabilidad.








CUARTO GRADO

Ø NÚMERO Y RELACIONES Y OPERACIONES







CAPACIDADES


PROPUESTA DEL DCN


PROPUESTA DEL GRUPO GRUPO

·         Interpreta y formula patrones matemáticos con operaciones combinadas de números   naturales, usando la calculadora u otro recurso de las TIC.


·         Interpreta la división exacta e inexacta con números naturales de hasta tres cifras.




·         Interpreta y representa fracciones equivalentes.



·         Compara y ordena fracciones heterogéneas.



·         Resuelve y formula problemas de estimación y cálculo con operaciones combinadas de números naturales.



·         Resuelve problemas de adición y sustracción con números decimales y fracciones.



·         Calcula la suma y la diferencia de fracciones heterogéneas usando fracciones homogéneas.


·         Calcula la suma y la diferencia de fracciones  y números decimales.









·         Interpreta y formula sucesiones con números naturales.




·         Interpreta y establece relaciones entre cantidades directamente proporcionales, y las organiza en tablas.


·         Interpreta y formula patrones matemáticos con operaciones combinadas de números naturales, usando la calculadora u otro recurso de las TIC en situaciones contextualizadas con responsabilidad.

·         Interpreta la división exacta e inexacta con números naturales de hasta tres cifras aplicando propiedades en situaciones contextualizadas mostrando responsabilidad e interés.

·         Representa e interpreta fracciones equivalentes utilizando lenguaje matemático en situaciones contextualizadas mostrando responsabilidad.

·         Compara y ordena fracciones heterogéneas utilizando lenguaje matemático en situaciones contextualizadas mostrando  responsabilidad.

·         Formula y resuelve problemas de estimación y cálculo con operaciones combinadas de números naturales aplicando adecuadamente propiedades en situaciones contextualizadas mostrando responsabilidad.

·         Resuelve problemas de adición y sustracción con números decimales y fracciones aplicando adecuadamente propiedades en situaciones contextualizadas mostrando  responsabilidad.

·         Calcula la suma y la diferencia de fracciones heterogéneas usando fracciones homogéneas aplicando correctamente las propiedades en situaciones contextualizadas mostrando  responsabilidad.

·         Calcula la suma y la diferencia de fracciones  y números decimales utilizando lenguaje matemático en situaciones contextualizadas mostrando responsabilidad.

·         Interpreta y formula sucesiones con números naturales  utilizando procedimientos matemáticos en situaciones contextualizadas mostrando responsabilidad al trabajar.

·         Interpreta y establece relaciones entre cantidades directamente proporcionales, y las organiza en tablas, utilizando un lenguaje matemático en situaciones contextualizadas, demostrando perseverancia en la solución de problemas.


Ø GEOMETRÍA Y MEDICIÓN





CAPACIDADES

PROPUESTA DEL DCN
PROPUESTA GRUPAL
·         Interpreta la ubicación de figuras geométricas planas en el primer cuadrante del plano cartesiano.





·         Identifica y grafica rectas secantes y paralelas.





·         Mide, identifica y clasifica ángulos.





·         Identifica y relaciona vértices, aristas y caras en un sólido geométrico.





·         Identifica y grafica figuras simétricas planas respecto de un eje de simetría.




·         Grafica polígonos en el plano cartesiano e identifica sus lados y ángulos.




·         Interpreta y representa, la translación de figuras geométricas.




·         Mide la capacidad de recipientes en litros y mililitros.




·         Resuelve problemas que involucran la noción de capacidad.





·         Resuelve y formula problemas que requieren diferentes unidades de medición.




·         Interpreta y argumenta la relación entre el   área y el perímetro de un polígono: cuadrado, triángulo, rectángulo y figuras compuestas.




·         Resuelve problemas que implican el cálculo de áreas de rectángulos, cuadrados y figuras compuestas.









·         Interpreta la ubicación de figuras geométricas planas en el primer cuadrante del plano cartesiano utilizando un lenguaje matemático en situaciones contextualizada con responsabilidad.

·         Identifica, grafica e interpreta rectas secantes y paralelas aplicando técnicas matemáticas en situaciones contextualizadas mostrando responsabilidad.

·         Mide, identifica y clasifica ángulos, utilizando un lenguaje matemático en situaciones contextualizadas mostrando perseverancia en la solución de problemas.

·         Identifica y relaciona vértices, aristas y caras en un sólido geométrico aplicando métodos en situaciones contextualizadas con responsabilidad.

·         Identifica, grafica e interpreta  figuras simétricas planas aplicando técnicas metodológicas en situaciones contextualizadas con responsabilidad.

·         Grafica polígonos en el plano cartesiano e identifica sus lados y ángulos aplicando procedimientos metodológicos mostrando responsabilidad.

·         Representa e interpreta, la translación de   figuras geométricas, aplicando técnicas matemáticas, en situaciones contextualizadas específicas, demostrando responsabilidad.

·         Mide la capacidad de recipientes en litros y mililitros, aplicando procedimientos metodológicos, en situaciones contextualizadas específicas, demostrando responsabilidad.

·         Resuelve problemas que involucran la noción de capacidad, aplicando procedimientos metodológicos, en situaciones contextualizadas, mostrando perseverancia en la búsqueda de soluciones.

·         Formula y resuelve  problemas que requieren diferentes unidades de medición, aplicando técnicas operativas, en situaciones contextualizadas, mostrando perseverancia en la búsqueda de soluciones.

·         Interpreta y argumenta la relación entre el   área y el perímetro de un polígono: cuadrado, triángulo, rectángulo y figuras compuestas, aplicando procedimientos metodológicos, en situaciones contextualizadas, mostrando responsabilidad.

·         Resuelve problemas que implican el cálculo de áreas de rectángulos, cuadrados y figuras compuestas, aplicando técnicas operativas, en situaciones contextualizadas, mostrando perseverancia en la búsqueda de soluciones.






Ø ESTADÍSTICA

procesos




CAPACIDADES

PROPUESTA DEL DCN

PROPUESTA GRUPAL

·         Interpreta y elabora tablas de doble entrada, gráficos de barras, de líneas, pictogramas, en relación a situaciones cotidianas.



·         Formula y argumenta la posibilidad de ocurrencia de sucesos numéricos y no numéricos: seguros probables e improbables.


·         Interpreta y elabora tablas de doble entrada, gráficos de barras, de líneas, pictogramas, aplicando procedimientos metodológicos, en relación a situaciones cotidianas, mostrando responsabilidad.


·         Formula y argumenta la posibilidad de ocurrencia de sucesos numéricos y no numéricos: seguros probables e improbables, aplicando procedimientos metodológicos, en situaciones contextualizadas, mostrando responsabilidad.





Linkografía



No hay comentarios:

Publicar un comentario