UNIVERSIDAD NACIONAL “PEDRO RUIZ GALLLO”
LAMBAYEQUE
Facultad de
Ciencias Histórico Sociales y Educación
Escuela
Profesional de Educación
Estructura de un Diseño Didáctico por
Competencias, para la E-A de la Geometría
ESPECIALIDAD : Educación primaria
Estudiante : Quesquén Sánchez, Sandra
Julysan1429@gmeil.com
Lambayeque, 10 de junio de 2012
DISEÑO DIDÁCTICO:
SESIÓN DE ENSEÑANZA APRENDIZAJE
I.
DATOS
INFORMATIVOS:
1.1. Institución
Educativa : Santa Ana 10834
1.2. Nivel / Modalidad : Primario
1.3. Ciclo : IV
1.4. Grado : 4
1.5. Sección : B
1.6. Nº de estudiantes : 28
1.7. Área : Matemática
1.8. Bachiller :
Quesquén Sánchez, Sandra
1.9. Fecha : 10/06/2014
1.10. Hora : 90 min.
II.
SECUENCIALIDAD
CURRICULAR DIDÁCTICA:
2.1.
Denominación
de la actividad:
“Resolvemos problemas utilizando unidades de medición”
2.2.
Justificación:
Mediante el presente diseño didáctico,
se tiene el propósito que los niños y niñas del 4° Grado de Educación Primaria
de la Institución Educativa “Santa Ana
10834”, desarrollen la capacidad Resuelve,
utilizando el método inductivo.
INTEGRACIÓN DE ÁREAS:
Área
|
Organizador
|
COMPETENCIAS
|
RELACIÓN
MEDIOS FINES
|
INDICADORES
DE LOGRO
|
||
FINES
|
MEDIOS
|
|||||
CAPACIDADADES Y ACTITUDES
|
CONOCMIENTOS
|
MÉTODOS
|
||||
Matemática
|
Geometría y Medición
|
Resuelve
problemas de unidades de medición utilizando el método inductivo en un
contexto áulico con responsabilidad
|
Utiliza unidades para
resolver problemas que implican medir magnitudes de longitud, capacidad, peso
y tiempo, e identifica para qué sirven algunos instrumentos de medición.
|
unidades de medición
·
M (metro)
·
Cm (centímetro)
· Mm (milímetro )
|
MÉTODO
INDUCTIVO
Pasos:
ü Observación
ü Experimentación
ü Comparación
ü Abstracción
ü Generalización
|
· Realiza comparaciones
perceptuales sobre las características medibles de sujetos, objetos y espacios.
|
ESTRATEGIAS
DIDÁCTICAS:
Procesos
|
Operaciones intelectuales y afectivas
|
Medios
y materiales
|
Tiempo
|
Visualización
|
ü La docente muestra a sus alumnos material
concreto como un lápiz, borrador, y un cuaderno para que lo observen, lo
manipulen, que comparen sus formas y tamaños (anexo 1).
ü El niño describe los diferentes materiales
presentados.
ü Luego se empezara a observar, manipular los objetos físicos que hay en el aula
(Anexo 2).
ü La docente hace unas preguntas
-¿qué hacemos
para saber cuál es más grande o pequeño?
-¿qué unidades de medición creen que se utiliza? -¿con qué medimos? |
Lápiz
Borrador
Cuaderno
Aula
|
20 min
|
Análisis
|
ü La
docente explica el tema “unidades de medición”.(Anexo 3)
ü Proporcionando
a los estudiantes oportunidades para identificar propiedades de los distintos
tipos de medición (M, CM, MM) de manera oral y con tarjetas escritas.
ü Hace
comparación de las propiedades que caracterizan a cada unidad de medición.
ü Identifican
propiedades que pueden ser usadas para contrastar diferentes objetos.
ü Hacen
un recorrido por el colegio y miden el largo y ancho de las 2 h 30 áreas
verdes en formación y proyectadas (19 m x 13 m aproximadamente).
ü Anotan
sus resultados en tarjetas de diferentes colores.
ü De
regreso al aula pegan las tarjetas en la pizarra y comparan sus
resultados.
ü LA
DOCENTE PREGUNTA: ¿Qué obtendrán si suman las Siluetas de medidas del largo y
ancho del terreno que visitamos? (semiperímetro)
ü Resuelven
un problema donde hallan el perímetro, considerando Winchas o cintas métricas.
|
20
min
|
|
Deducción Informal
|
ü Los
niños miden diferentes objetos con el centímetro con una guincha y con una
regla.
ü Identifican
conjuntos mínimos de propiedades de los tipos de medición.
ü Mide
un objeto con las diferentes clases de medición.
ü Los
niños compiten y comprueban unos a otros cual es el resultado de los diversos
tipos de medición que utilizan para medir
los objetos.
|
10
min
|
|
Deducción formal
|
ü Los
niños aprenden el concepto de las unidades de medición
ü Identifican
información implicada por una figura o información.
ü Reflexiona
sobre el pensamiento geométrico
ü Resuelven
problemas.
|
20 min
|
|
Rigor
|
ü La docente evalúa a sus
alumnos mediante un test de aptitud (ANEXO )
|
20
min
|
Evaluación:
Competencia
|
Capacidad
|
Habilidad
|
Indicadores
|
Resuelve
problemas de unidades de medición utilizando el método inductivo en un
contexto áulico con responsabilidad
|
Utiliza
unidades para resolver problemas que implican medir magnitudes de longitud,
capacidad, peso y tiempo, e identifica para qué sirven algunos instrumentos
de medición
|
Observa
Manipula
Describe
Compara
Identifica
|
Mide longitudes utilizando unidades
de medidas.
Resuelve
problemas de medición
|
I.
Referencias
bibliográficas.
1.1.
Del docente:
Godino, Juan D. y Ruiz,
Francisco.(2002). Geometría y su didáctica para maestros
López Escudero Olga Leticia y García
Peña Silvia Enseñanza de la geometría, primera edición 2008, México: INEE
Jaime A.P y Gutiérrez, A.R (1990). Una
propuesta de Fundamentación para la Enseñanza de la Geometría. El modelo de van
Hiele. En Linares, S.; Sánchez, M.V. (Eds.).Teoría y práctica en Educación
Matemática. Capítulo 60 (295-384). Sevilla: Alfar.
Resumen teórico científico:
MEDIDAS DE LONGITUD
¿Qué son?
Una unidad es una medida en la que
hay 1 algo.
Así que 1 metro es una unidad.
Y 1 segundo también es una
unidad
Y 1 m/s (un metro por
segundo) también es una unidad, porque la cantidad es uno.
Estandarizado
Las unidades de medida
están "estandarizadas", lo que significa que hay una manera estándar de
medir cada una de ellas.
Para
medir longitudes se pueden utilizar distintas unidades de medida. La unidad de
medida más utilizada es el metro (m).
Se
utiliza para medir la altura de un árbol, la longitud de una piscina, la
longitud de una habitación, la altura de un edificio.
Unidad
|
Abreviatura
|
Equivalencia
|
Metro
|
m
|
1 m
|
Centímetro
|
cm
|
0.01 m
|
Milímetro
|
mm
|
0.001 m
|
La
relación con el metro es:
1
metro = 10 decímetros (si dividimos el metro en 10 partes iguales,
cada parte es un decímetro).
1
metro = 100 centímetros (si dividimos el metro en 100 partes iguales,
cada parte es un centímetro).
1
metro = 1.000 milímetros (si dividimos el metro en 1.000 partes
iguales, cada parte es un milímetro).
Fundamentación Teórico Científica:
Nivel 1: RECONOCIMIENTO (o
descripción):
- Percibe los
objetos en su totalidad y como unidades.
- Describe los
objetos por su aspecto físico y los clasifica (semejanza y diferencias)
- No reconoce
explícitamente los componentes y propiedades de los objetos.
Nivel 2: ANÁLISIS:
- Percibe los
objetos como formados por partes y dotados de propiedades (no identifica las
relaciones entre ellas)
- Describe los
objetos de manera informal mediante el reconocimiento de sus componentes y
propiedades.
- No hace
clasificaciones lógicas.
- Deduce nuevas
relaciones entre componentes o nuevas propiedades de manera informal a partir
de la experimentación.
Nivel 3: CLASIFICACIÓN (o
abstracción):
- Realiza
clasificaciones lógicas de los objetos y descubre nuevas propiedades con base
en propiedades o relaciones ya conocidas o por razonamiento informal.
- Describe las
figuras de manera formal (comprende el papel de las definiciones y los
requisitos de una definición correcta)
- Entiende los pasos
individuales de un razonamiento lógico en forma aislada pero no comprende el
encadenamiento de estos pasos, ni la estructura de una demostración.
- No es capaz de
realizar razonamientos lógicos formales, ni siente la necesidad de hacerlo.
- No comprende la
estructura axiomática de las matemáticas.
Nivel 4: DEDUCCIÓN (o prueba):
- Es capaz de
realizar razonamientos lógicos formales.
- Comprende la
estructura axiomática de las matemáticas.
- Acepta la
posibilidad de llegar al mismo resultado desde distintas premisas.
0 comentarios:
Publicar un comentario